1 мм изоляции Астратек = 50 мм рулонной изоляции
Продажа, расчет, проведение работ
Главная arrow Теоретические данные arrow Конвекция
Конвекция

Конвекция (физич.)
Конвекция (от лат. convectio — принесение, доставка), перенос теплоты в жидкостях, газах или сыпучих средах потоками вещества. Различают естественную, или свободную, и вынужденную К.
Естественная К. возникает при неравномерном нагреве (нагреве снизу) текучих или сыпучих веществ, находящихся в поле силы тяжести (или в системе, движущейся с ускорением). Вещество, нагретое сильнее, имеет меньшую плотность и под действием архимедовой силы FA перемещается относительно менее нагретого вещества. Сила FA = Dr•V (Dr — разность плотностей нагретого вещества и окружающей среды, V — объём нагретого вещества). Направление силы FA, а следовательно, и К. для нагретых объёмов вещества противоположно направлению силы тяжести. К. приводит к выравниванию температуры вещества. При стационарном подводе теплоты к веществу в нём возникают стационарные конвекционные потоки, переносящие теплоту от более нагретых слоев к менее нагретым. С уменьшением разности температур между слоями интенсивность К. падает. При высоких значениях теплопроводности и вязкости среды К. также оказывается ослабленной. На К. ионизованного газа (например, солнечной плазмы) существенно влияет магнитное поле и состояние газа (степень его ионизации и т.д.). В условиях невесомости естественная К. невозможна. При вынужденной К. перемещение вещества происходит главным образом под воздействием какого-либо устройства (насоса, мешалки и т.п.). Интенсивность переноса теплоты здесь зависит не только от перечисленных выше факторов, но и от скорости вынужденного движения вещества. К. широко распространена в природе: в нижнем слое земной атмосферы (см. Конвекция в атмосфере), морях и океанах (см. Конвекция в океане), в недрах Земли, на Солнце (в слое до глубины ~20—30% радиуса Солнца от его поверхности) и т.д. С помощью К. осуществляют охлаждение или нагревание жидкостей и газов в различных технических устройствах (см. Конвективный теплообмен).

Конвективный теплообмен
Конвективный теплообмен, процесс переноса тепла, происходящий в движущихся текучих средах (жидкостях либо газах) и обусловленный совместным действием двух механизмов переноса тепла — собственно конвективного переноса и теплопроводности. Таким образом, в случае К. т. распространение тепла в пространстве осуществляется за счёт переноса тепла при перемещении текучей среды из области с более высокой температурой в область с меньшей температурой, а также за счёт теплового движения микрочастиц и обмена кинетической энергией между ними. В связи с тем, что для неэлектропроводных сред интенсивность конвективного переноса очень велика по сравнению с теплопроводностью, последняя при ламинарном течении играет роль лишь для переноса тепла в направлении, поперечном течению среды. Роль теплопроводности при К. т. более значительна при движении электропроводных сред (например, жидких металлов). В этом случае теплопроводность существенно влияет и на перенос тепла в направлении движения жидкости. При турбулентном течении основную роль в процессе переноса тепла поперек потока играет пульсационное перемещение турбулентных вихрей поперек течения жидкости. Участие теплопроводности в процессах К. т. приводит к тому, что на эти процессы оказывают существенное влияние теплофизические свойства среды: коэффициент теплопроводности, теплоёмкость, плотность. В связи с тем, что в процессах К. т. важную роль играет конвективный перенос, эти процессы должны в значительной мере зависеть от характера движения жидкости, то есть от значения и направления скорости среды, от распределения скоростей в потоке, от режима движения жидкости (ламинарное течение либо турбулентное). При больших (сверхзвуковых) скоростях движения газа на процессы К. т. начинает влиять распределение давления в потоке. Если движение жидкости обусловлено действием некоторого внешнего побудителя (насоса, вентилятора, компрессора и т.п.), то такое движение называют вынужденным, а происходящий при этом процесс К. т. — вынужденной конвекцией. Если движение жидкости вызвано наличием неоднородного поля температуры, а следовательно, и неоднородной плотности в среде, то такое движение называют свободным или естественным, а процесс К. т. — свободной или естественной конвекцией. На практике встречаются и такие случаи, когда приходится учитывать как вынужденную, так и свободную конвекцию. Наиболее интересным с точки зрения технических приложений случаем К. т. является конвективная теплоотдача, то есть процесс двух К. т., протекающий на границе раздела двух фаз (твердой и жидкой, твердой и газообразной, жидкой и газообразной). При этом задача расчета состоит в нахождении плотности теплового потока на границе раздела фаз, то есть величины, показывающей, какое количество тепла получает или отдает единица поверхности раздела фаз за единицу времени. Помимо указанных выше факторов, влияющих на процесс К. т., плотность теплового потока зависит также от формы и размеров тела, от степени шероховатости поверхности, а также от температур поверхности и теплоотдающей или тепловоспринимающей среды.Для описания конвективной теплоотдачи используется формула: qcт = a(Т0—Тст), где qcт — плотность теплового потока на поверхности, вт/м2; a — коэффициент теплоотдачи, вт/(м2•°С); T0 и Тст — температуры среды (жидкости или газа) и поверхности соответственно. Величину T0 — Тст часто обозначают DТ и называется температурным напором. Коэффициент теплоотдачи a характеризует интенсивность процесса теплоотдачи; он возрастает при увеличении скорости движения среды и при переходе от ламинарного режима движения к турбулентному в связи с интенсификацией конвективного переноса. Он также всегда больше для тех сред, у которых выше коэффициент теплопроводности. Коэффициент теплоотдачи существенно повышается, если на поверхности происходит фазовый переход (например, испарение или конденсация), всегда сопровождающийся выделением (поглощением) скрытой теплоты. На значение коэффициент теплоотдачи сильное влияние оказывает массообмен на поверхности. Основной и наиболее трудной проблемой в расчётах процессов конвективной теплоотдачи является нахождение коэффициента теплоотдачи a. Современные методы описания процесса К. т., основанные на теории пограничного слоя, позволяют получить теоретические (точные или приближённые) решения для некоторых достаточно простых ситуаций. В большинстве же встречающихся на практике случаев коэффициент теплоотдачи определяют экспериментальным путём. При этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методами подобия теории и представляются обычно в следующем безразмерном виде: Nu = f (Re, Pr) — для вынужденной конвекции и Nu = f (Gr, Pr) — для свободной конвекции, где Nu  =   — Нуссельта число,— безразмерный коэффициент теплоотдачи (L — характерный размер потока, l — коэффициент теплопроводности); Re =   — Рейнольдса число, характеризующее соотношение сил инерции и внутреннего трения в потоке (u — характерная скорость движения среды, u — кинематический коэффициент вязкости); Pr =   — Прандтля число, определяющее соотношение интенсивностей термодинамических процессов (a - коэффициент температуропроводности); Gr = Грассхофа число, характеризующее соотношение архимедовых сил, сил инерции и внутреннего трения в потоке (g — ускорение свободного падения, b — термический коэффициент объёмного расширения).Процессы К. т. чрезвычайно широко распространены в технике (энергетике, холодильной технике, ракетной технике, металлургии, химической технологии), а также в природе (перенос тепла в атмосфере, в морях и океанах).
Лит.: Эккерт Э.-Р., Дрейк Р.-М., Теория тепло- и массообмена, пер. с англ., М. - Л., 1961; Гухман А. А., Применение теории подобия к исследованию процессов тепло- и массообмена (Процессы переноса в движущейся среде), М., 1967;
Исаченко В. П., Осипова В. А., Сукомел А. С., Теплопередача, М., 1969.
  В. А. Арутюнов.

Лучистый теплообмен, радиационный теплообмен, осуществляется в результате процессов превращения внутренней энергии вещества в энергию излучения, переноса энергии излучения и её поглощения веществом. Протекание процессов Л. т. определяется взаимным расположением в пространстве тел, обменивающихся теплом, свойствами среды, разделяющей эти тела. Существенное отличие Л. т. от других видов теплообмена (теплопроводности, конвективного теплообмена) заключается в том, что он может протекать и при отсутствии материальной среды, разделяющей поверхности теплообмена, так как осуществляется в результате распространения электромагнитного излучения. Лучистая энергия, падающая в процессе Л. т. на поверхность непрозрачного тела и характеризующаяся значением потока падающего излучения Qпад, частично поглощается телом, а частично отражается от его поверхности (см. рис.).Поток поглощённого излучения Qпогл определяется соотношением: Qпогл = А Qпад, где А — поглощательная способность тела. В связи с тем, что для непрозрачного тела Qпад = Qпогл + Qoтр, где Qoтр — поток отражённого от поверхности тела излучения, эта последняя величина равна: Qoтр = (1 — А) Qпад, где 1 — А = R — отражательная способность тела. Если поглощательная способность тела равна 1, а следовательно, его отражательная способность равна 0, то есть тело поглощает всю падающую на него энергию, то оно называется абсолютно чёрным телом. Любое тело, температура которого отлична от абсолютного нуля, испускает энергию, обусловленную нагревом тела. Это излучение называется собственным излучением тела и характеризуется потоком собственного излучения Qсоб. Собственное излучение, отнесённое к единице поверхности тела, называется плотностью потока собственного излучения, или лучеиспускательной способностью тела. Последняя в соответствии со Стефана - Больцмана законом излучения пропорциональна температуре тела в четвёртой степени. Отношение лучеиспускательной способности какого-либо тела к лучеиспускательной способности абсолютно чёрного тела при той же температуре называется степенью черноты. Для всех тел степень черноты меньше 1. Если для некоторого тела она не зависит от длины волны излучения, то такое тело называется серым. Характер распределения энергии излучения серого тела по длинам волн такой же, как у абсолютно чёрного тела, то есть описывается Планка законом излучения. Степень черноты серого тела равна его поглощательной способности. Поверхность любого тела, входящего в систему Л. т., испускает потоки отражённого излучения Qoтр и собственного излучения Qcoб; суммарное количество энергии, уходящей с поверхности тела, называется потоком эффективного излучения Qэфф и определяется соотношением: Qэфф = Qoтр + Qcoб. Часть поглощённой телом энергии возвращается в систему в виде собственного излучения, поэтому результат Л. т. можно представить как разность между потоками собственного и поглощённого излучения. Величина Qpeз = Qcoб — Qпогл называется потоком результирующего излучения и показывает, какое количество энергии получает или теряет тело в единицу времени в результате Л. т. Поток результирующего излучения можно выразить также в виде Qpeз = Qэфф — Qпад, то есть как разность между суммарным расходом и суммарным приходом лучистой энергии на поверхности тела. Отсюда, учитывая, что Qпад = (Qcoб — Qpeз) / А, получим выражение, которое широко используется в расчётах Л. т.:
Задачей расчётов Л. т. является, как правило, нахождение результирующих потоков излучения на всех поверхностях, входящих в данную систему, если известны температуры и оптические характеристики всех этих поверхностей. Для решения этой задачи, помимо последнего соотношения, необходимо выяснить связь между потоком Qпад на данную поверхность и потоками Qэфф на всех поверхностях, входящих в систему Л. т. Для нахождения этой связи используется понятие среднего углового коэффициента излучения, который показывает, какая доля полусферического (то есть испускаемого по всем направлениям в пределах полусферы) излучения некоторой поверхности, входящей в систему Л. т., падает на данную поверхность. Таким образом, поток Qпад на какие-либо поверхности, входящие в систему Л. т., определяется как сумма произведений Qэфф всех поверхностей (включая и данную, если она вогнутая) на соответствующие угловые коэффициенты излучения. Л. т. играет значительную роль в процессах теплообмена, происходящих при температурах около 1000 °С и выше. Он широко распространён в различных областях техники: в металлургии, теплоэнергетике, ядерной энергетике, ракетной технике, химической технологии, сушильной технике, гелиотехнике.
Лит.: Невский А. С., Теплообмен излучением в металлургических печах и топках котлов, Свердловск, 1958;
 Блох А. Г., Основы теплообмена излучением, М. — Л., 1962; Исаченко В. П., Осипов В. А., Сукомел А. С., Теплопередача, М., 1969.
  В. А. Арутюнов.

 
< Пред.   След. >

Астратек Москва: тел. +7 (915) 411 39 39,  +7 (985) 727 76 78,




 
Типы покрытий АСТРАТЕК®
Теплоизоляционное полимерное покрытие АСТРАТЕК®
Теплоизоляционное полимерное покрытие АСТРАТЕК® металл

Теплоизоляционное полимерное покрытие АСТРАТЕК® фасад
Водно-дисперсионные краски и грунтовки GROSS®
Грунтовка по металлу GROSS® металл
Универсальная грунтовка GROSS® фасад
Краски водно-дисперсионные GROSS® фасад, GROSS® интерьер
Использование Астратек
Применение АСТРАТЕК в строительстве
Применение АСТРАТЕК на трубопроводах
Применение АСТРАТЕК в хозяйстве
Применение АСТРАТЕК на предприятиях


Страница сгенерирована за 0.015851 секунд